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ABSTRACT8

The decadal predictability of sea surface temperature (SST) and 2m air temperature (T2m)9

in Geophysical Fluid Dynamics Laboratory (GFDL)’s decadal hindcasts, which are part of10

the Fifth Coupled Model Intercomparison Project experiments, has been investigated us-11

ing an average predictability time (APT) analysis. Comparison of retrospective forecasts12

initialized using the GFDL’s Ensemble Coupled Data Assimilation system with uninitial-13

ized historical forcing simulations using the same model, allows identification of internal14

multidecadal pattern (IMP) for SST and T2m. The IMP of SST is characterized by an15

inter-hemisphere dipole, with warm anomalies centered in the North Atlantic subpolar gyre16

region and North Pacific subpolar gyre region, and cold anomalies centered in the Antarctic17

Circumpolar Current region. The IMP of T2m is characterized by a general bi-polar seesaw,18

with warm anomalies centered in Greenland, and cold anomalies centered in Antarctica.19

The retrospective prediction skill of the initialized system, verified against independent ob-20

servational datasets, indicates that the IMP of SST may be predictable up to 4 (10) year21

lead time at 95% (90%) significance level, and the IMP of T2m may be predictable up to 222

(10) years at 95% (90%) significance level. The initialization of multidecadal variations of23

northward oceanic heat transport in the North Atlantic significantly improves the predic-24

tive skill of the IMP. The dominant roles of oceanic internal dynamics in decadal prediction25

are further elucidated by fixed-forcing experiments, in which radiative forcing is returned26

abruptly to 1961 values. These results point towards the possibility of meaningful decadal27

climate outlooks using dynamical coupled models, if they are appropriately initialized from28

a sustained climate observing system.29
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1. Introduction30

Multi-year to decadal climate prediction, characterized by combined signals from external31

radiative forcing changes and internal climate variations, is an initiative of the fifth Coupled32

Model Intercomparison Project (CMIP5), which will be assessed in the Intergovernmental33

Panel on Climate Change’s Fifth Assessment Report (IPCC AR5) (Meehl et al. 2009; Taylor34

et al. 2012). Although the capability to provide meaningful decadal climate outlooks using35

dynamical models has yet to be firmly established, the pioneering decadal hindcast experi-36

ments using initialized coupled models appear promising (Keenlyside et al. 2008; Smith et al.37

2007).38

A potentially large source of multi-year to decadal predictability may come from fluctua-39

tions in the Atlantic meridional overtuning circulation (AMOC) (Delworth and Mann 2000;40

Knight et al. 2005; Zhang and Delworth 2006). The multidecadal variations of the basin-scale41

North Atlantic sea surface temperature (SST), generally referred to as the Atlantic multi-42

decadal oscillation (AMO) (Enfield et al. 2001), have been hypothesized to be associated43

with AMOC fluctuations (Knight et al. 2005; Solomon et al. 2011). Zhang (2008) showed44

that the AMO is closely linked to North Atlantic subsurface temperature in observations and45

the GFDL CM2.1 control simulation with constant external conditions, and it was suggested46

that the AMO has similar predictability as subsurface temperature and AMOC on the order47

of 10 years in perfect model predictability experiments using CM2.1 (Msadek et al. 2010).48

The potential predictability of North Atlantic upper ocean temperature on the order of 1049

years was found in the CM2.1 long control integrations using an initial-value predictability50

metric (Branstator et al. 2012). AMO-like SST patterns were found in the uninitialized51

CMIP3 simulations for the 20th-century, 21st-century and pre-industrial eras, while most52

models tend to produce AMO of shorter time scales and less periodic than suggested by53

observations (Ting et al. 2011). However, the existence of the AMO-like SST patterns in re-54

alistic decadal hindcasts has not been well established, and the retrospective prediction skill55

of such patterns using GFDL’s fully-coupled ensemble initialization and decadal forecasting56
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system has not been assessed.57

The expected gain from initialized decadal hindcasts is to capture the evolution of slow58

internal variations (e.g., AMO) of the climate system in addition to the relatively robust59

response to external forcings, so it is of necessity to detect the existence of those internal60

variations in the initialized hindcasts. The detection involves separating natural internal61

variability from anthropogenic forced response (Solomon et al. 2011). Here, we take the62

approach of comparing parallel sets of initialized decadal hindcasts and uninitialized his-63

torical forcing simulations made with the same model. If the external forcing is identical,64

then difference between the two sets of hindcasts, called internal residuals here, isolates the65

impact of initialization. We employ a new method, called the average predictability time66

(APT) optimization (DelSole and Tippett 2009a,b), to identify characteristic patterns of67

predictable components in the internal residuals of decadal hindcasts. The method success-68

fully identified an internal multidecadal SST pattern from the CMIP3 multimodel unforced69

simulations (DelSole et al. 2011).70

In this study, we apply APT analysis to investigate the decadal predictability of the an-71

nual mean SST and 2-m surface temperature in GFDL’s IPCC CMIP5 hindcast experiments.72

Our main goals are to identify the internal multidecadal patterns in the initialized decadal73

hindcasts and assess the prediction skill of those patterns. Details of the hindcasts, observa-74

tional datasets and methods are discussed in section 2. In section 3, the internal multidecadal75

patterns for SST and T2m are identified by APT analysis, the retrospective prediction skill76

is assessed using observations, and roles of ocean internal dynamics on decadal prediction77

are investigated. Conclusions and discussions are given in section 4.78

2. Decadal Hindcasts, Datasets and Methods79

The decadal hindcasts were initialized by the GFDL’s ensemble coupled data assimilation80

(ECDA) system. The ECDA employs an ensemble-based filtering algorithm applied to the81
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GFDL’s fully coupled climate model, CM2.1, which is one of two GFDL CMIP3 models82

(Delworth et al. 2006). More details of ECDA can be found in Zhang and Rosati (2010)83

and Zhang et al. (2007), and a comprehensive assessment of oceanic variability from the84

latest version of the ECDA analyzed from 1960 to 2010 can be found in Chang et al. (2012).85

This fully coupled model methodology was chosen to produce a balanced state between the86

atmosphere and ocean. The 10-member ensemble decadal hindcasts were initialized on 187

January every year from 1961 to 2011 and integrated for 10 years with temporally varying88

anthropogenic and natural forcing, giving a total of 5100 yr of hindcast.89

For the historical forcing simulations, the 10 ensemble members using CM2.1 were inte-90

grated using temporally varying anthropogenic and natural forcing for the 1861-2020 period91

(Knutson et al. 2006). Note that the temporally varying anthropogenic and natural forcings92

between 1961 to 2020 are exactly the same for the historical forcing simulations and decadal93

hindcasts. To elucidate the role of initialization in predicting the internal multidecadal cli-94

mate variations, we conducted a set of 10-member ensemble fixed-forcing decadal prediction95

experiments initialized on 1 January every 5 years from 1965 to 2010. In the fixed-forcing96

experiments, the values of the anthropogenic and natural forcings are returned to 1961 con-97

ditions, and the initial conditions are exactly the same as in the decadal hindcasts.98

The mean forced response was obtained from the ensemble mean of 10-member histor-99

ical forcing simulations. The decadal hindcast anomalies for each variable were obtained100

by subtracting out the lead-time dependent climatology from hindcasts, which effectively101

removes the climate drift assuming that the climate drift is systematic with the forecast lead102

time. Then, the internal residuals were computed by subtracting the mean forced response103

from hindcast anomalies. We diagnose the predictability in the internal residuals as the104

predictability gain arising purely from initialization. Mathematically, the internal residual105

(IR) for a hindcast variable X is defined as106

IRτ = Xτ − X̄τ − Rτ , (1)107

where R is the mean forced response, the overbar denotes the climatology of hindcasts, which108
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is a function of lead time τ .109

The observational datasets for evaluating prediction skill include the sea surface tem-110

perature (SST) from the United Kingdom Meteorological Office Hadley Centre’s Global111

sea-ice coverage and SST analysis (HadISST 1.1; available online at http://badc.nerc.112

ac.uk/data/hadisst/) (Rayner et al. 2003) and the Extended Reconstruction Sea Surface113

Temperature (ERSST) analysis version 3b (Smith and Reynolds 2004), the 2-m temperature114

(T2m) from the NCEP-NCAR Reanalysis (NNR) (Kalnay and Coauthors 1996; Kistler et al.115

2001) from 1948 to 2011, and the 20-century reanalysis (20CR) from 1900 to 2010 (Compo116

et al. 2011). Consistent with the hindcasted internal residuals, we obtain observed internal117

residuals by subtracting out the long-term linear trend covering the whole dataset for each118

variable. van Oldenborgh et al. (2012) reported that verification of the decadal climate pre-119

diction skill does not depend strongly on the definition of the trend, and we obtain similar120

results of decadal predictive skill when a quadratic trend is removed from observations, so121

we choose removing the long-term linear trend from observations in this study.122

The observed AMO index used in Figs. 1 and 4 was downloaded from http://www.esrl.123

noaa.gov/psd/data/timeseries/AMO/. The AMO index is defined as the detrended, area-124

weighted-average SST over the North Atlantic from 00 to 700N using the Kaplan SST dataset125

(Kaplan et al. 1998). The index was annually averaged and normalized to unit variance.126

Complete details of APT can be found in DelSole and Tippett (2009a,b). Briefly, the127

method is to optimize APT, which is defined as the integral over lead time of the “signal to128

total” ratio of a forecast mode129

APT = 2

∫ ∞
0

σ2
signal(τ)

σ2
total

dτ, (2)130

where σ2
signal(τ) is the variance of the ensemble mean at fixed lead time τ , and σ2

total is131

the corresponding total variance of the forecast ensembles. For the ensemble forecasts, the132

signal and total covariance can be approximated by the corresponding ensemble covariances.133

Following DelSole and Tippett (2009a), maximizing APT in ensemble forecasts leads to the134
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generalized eigenvalue problem135 (
2
∞∑
τ=1

Σsignal(τ)

)
q = λΣtotalq, (3)136

where q is the projection vector, Σsignal(τ) is the forecast ensemble mean covariance matrix137

at the lead time τ for a given variable, and Σtotal is the total ensemble covariance matrix over138

all lead time. The eigenvectors q provide the basis for decomposing the multivariate time139

series into a complete, uncorrelated set of components ordered such that the first maximizes140

APT, the second maximizes APT subject to being uncorrelated with the first, and so on.141

The eigenvalues of (3) correspond to the APT values of each component. This decomposition142

based on APT is analogous to Empirical Orthogonal Function (EOF) analysis, except that143

we decompose predictability instead of decomposing variance. More detailed descriptions of144

the APT calculations are given in the first section of the appendix.145

3. Results146

a. The IMP of SST147

We first apply APT analysis to the internal residuals of the annual mean SST. As dis-148

cussed in section 2, using the internal residuals ensures that the obtained predictability is149

due to internal variability and not to natural and anthropogenic forcing. The component150

with maximum APT in decadal hindcasts is shown in Fig 1a. The pattern is predominantly151

of a general inter-hemisphere dipole with warm anomalies centered in the North Atlantic152

subpolar gyre region and North Pacific subpolar gyre region, and cold anomalies centered153

in the Antarctic Circumpolar Current region. Note that the amplitudes of the pattern are154

considerably larger in the North Atlantic subpolar gyre region (over 0.50C) than those in155

the North Pacific subpolar gyre and the Antarctic Circumpolar Current (about 0.10−0.20C)156

regions. The APT for this component is 18.9 yr, and the fraction of explained annual-mean157

variance by this component is about 6.8%. The APT of this component is found to be sta-158
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tistically significant from a white noise process (see the first section of the appendix). Note159

that APT measures the time scale of predictability in a perfect model scenario, whereas the160

quantification of the actual predictive skill for this component remains to be verified against161

observations. Since the component has loadings concentrated in the North Atlantic SPG162

and has temporal variations closely following the AMO index as shown next, we refer to this163

component as the AMO-like internal multidecadal pattern (IMP).164

The APT value is probably underestimated, because we only integrate APT up to 10165

year lead time in (3) due to the 10-year upper limit of hindcasts. If we had longer forecasts,166

we would expect to obtain components with at least as much APT as found in the 10-year167

case. The APT also could depend significantly on model: DelSole et al. (2011) found that the168

APT estimated from pre-industrial control runs of the CMIP3 data set varied by more than a169

factor of four (see also Branstator et al. (2012)). However, the model-to-model predictability170

variations in decadal hindcasts could be reduced because all model states are initialized from171

the same climate observing system, although the initialization methods vary among model172

hindcasts. The sensitivity of APT to different model hindcasts is beyond the scope of this173

study.174

The time series of the component with maximum APT in the decadal hindcasts as a func-175

tion of initialized years and lead time every five years from 1961 to 2010 are shown by shading176

in Fig. 1b and c. To assess the forecast skill of the component, we project the detrended177

ERSST and HadISST data onto the eigenvector q with maximum APT from (3) to obtain178

the observed time series, which are indicated by solid lines in Fig. 1b and c. A striking aspect179

of two observed time series is the multidecadal oscillations with negative anomalies during180

1965-95 and positive anomalies during 1925-60 and 1996-2010. Also, the two observed time181

series are strongly correlated with the annual mean observed Atlantic multidecadal oscilla-182

tion (AMO) index (the correlation coefficients are 0.75 and 0.77 for ERSST and HadISST183

datasets respectively). Interestingly, the initialized forecasts of the component closely follow184

the observed AMO index during the negative (1961-1994) and positive (1996-2010) phases,185
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and even the phase shift around 1995.186

To facilitate comparison with statistical prediction methods, we chose a simple persis-187

tence model, a commonly used benchmark for skill, which assumes the forecast equals the188

initial condition. The anomaly correlation (AC) coefficients between forecasts and ERSST189

observation as a function of lead time, shown in Fig. 2a, are statistically significant up to 4190

year lead time at 95% significance level and up to 10 years at 90% significance level for the191

hindcasts, while they are statistically significant up to 3 year lead time at 95% signicance192

level and up to 4 years at 90% significance level for the persistence forecasts. Verification193

of predictions against HadISST data yields similar predictive skill (figure not shown). The194

p-value of testing significance difference between two AC coefficients for model hindcasts195

and persistence forecasts, shown in Fig. 2b, tends to decrease from about 0.45 to 0.15 with196

forecast lead time. Note that the critical values and p-values were computed by adjusting197

the effective sample size accounting for autocorrelations in the data (see the second section198

of the appendix). Although 41-50 forecasts were used to compute the skill of forecasts at199

given lead time, the effective sample size is generally less than 10 due to the strong auto-200

correlations of the forecasts and observations, resulting in relatively large p-values (larger201

than 0.1). Given these relatively large p-values, we choose 0.25 as the threshold p-value for202

testing the difference between two correlation coefficients. We conclude that the prediction203

skill of model hindcasts is statistically better than that of persistence forecasts for 8-10 years204

lead times at 75% significance level, and not statistically different for 1-7 years lead times.205

The covarying structure of the AMO-like IMP in the North Atlantic and North Pacific206

is similar to the IMP identified from the CMIP3 multimodel unforced simulations using the207

APT analysis (DelSole et al. 2011), which may be explained as the impact of AMO on North208

Pacific climate variability through atmospheric teleconnections (Zhang and Delworth 2007).209

It was also indicated in previous studies that the strong signals of SST variability associ-210

ated with AMO exist in the North Atlantic subpolar gyre in observations as well as model211

simulations (Folland et al. 1986; Kushnir 1994; Delworth and Mann 2000). Previous model212
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studies indicated that multidecadal Atlantic MOC variations force inter-hemispheric dipolar213

SST anomalies (Collins et al. 2006; Latif et al. 2006b), and the out-of-phase relationship of214

SST variations between the Antarctic Circumpolar Current region and the North Atlantic215

subpolar gyre region associated with AMO was also revealed in observations (Latif et al.216

2006a; Wu et al. 2011). The advance of this study is that the AMO-like IMP is not only suc-217

cessfully identified in decadal hindcasts using APT analysis, but this pattern as a whole may218

be predictable up to 4 years at 95% significance level and up to 10 years at 90% significance219

level in GFDL’s fully-coupled ensemble initialization and decadal forecasting system.220

To further confirm that the predictable signals are not statistical artifacts of the APT221

technique, we directly analyze predictability of anomalous SST averaged over the North222

Atlantic subpolar gyre region (marked as a box bounded by 500W-100W and 450N-650N223

in Fig. 1a), where the strong predictable signals were indicated by APT analysis. The224

time series of anomalous SST in the North Atlantic subpolar gyre region in the decadal225

hindcasts as a function of initialized years and lead time every five years from 1961 to 2010226

are shown by shading in Fig. 3a and b. The initialized forecasts closely follow the observations227

during the negative (1961-1994) and positive (1996-2010) phases, and even the phase shift228

around 1995. Also, the ensemble mean of uninitialized historical forcing simulations cannot229

produce multidecadal variations associated with realistic AMO, indicating that the decadal230

predictability arises from initialization. When forecasts are verified against ERSST, the SST231

in the North Atlantic subpolar gyre region is predictable up to 4 years at 95% significance232

level and up to 7 years at 90% significance level in the model hindcasts, while the persistence233

model has skill only up to 3 years at 95% significance level and up to 4 years at 90%234

significance level (Fig. 3c). Verification of model hindcasts and persistence forecasts against235

HadISST data yields similar predictive skill (figure not shown). The predictive skill of model236

hindcasts is statistically better than that of persistence forecasts for 3-10 years lead times at237

75% significance level, and they are not statistically different for 1-2 years lead times. This238

local predictability analysis confirms the robustness of the APT diagnosis for identifying the239
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AMO-like IMP.240

b. The IMP of T2m241

The skill in predicting the IMP of SST on decadal timescales would imply skill in predict-242

ing the air surface temperature as a response to SST forcing, thus we apply the same APT243

analysis as described above to the internal residuals of the annual mean 2-m temperature.244

The component with maximum APT in decadal hindcasts is shown in Fig. 4a. The pat-245

tern is predominantly of a general bi-polar seesaw with warm anomalies extending from the246

North Atlantic subpolar gyre region to Greenland and the Arctic Ocean, and cold anomalies247

centered in Antarctica. The APT value for this component is 17.8 yr, and the fraction of248

explained annual-mean variance by this component is about 4.5%. The APT of this compo-249

nent is found to be statistically significant. We project the detrended NNR and 20CR data250

onto the leading eigenvector q for T2m from (3) to obtain the observed time series, shown251

in Fig. 4b and c. Two observed time series for the T2m pattern show similar multidecadal252

variations in phase with AMO as those for the SST IMP, e.g., negative anomalies during253

1965-95 and positive anomalies during 1925-60 and 1996-2010, suggesting the multidecadal254

variability of T2m arises from multidecadal SST variations. The anomaly correlation coeffi-255

cients between forecasts and observations as a function of lead time, shown in Fig. 5, indicate256

that the T2m pattern as a whole may be predictable up to 2 years at 95% confidence level257

and up to 10 years at 90% significance level verified against the NNR data (except the 6258

year lead time). The p-values of testing significance difference between 6 year lead time AC259

coefficient and 8-10 year lead AC coefficients are larger than 0.3, so the nominal increase of260

AC coefficients after 6 year lead time could be due to sampling errors. Verification of the261

same predictions against 20CR data yields similar predictive skill (figure not shown). The262

predictive skill of model hindcasts is statistically better than that of persistence forecasts for263

7-10 years lead times at 75% significance level, and not statistically different for 1-6 years264

lead times (Fig. 5).265
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Although the so-called “bi-polar seesaw” pattern has been observed in the Greenland and266

Antarctica ice core data on millennial time scales (Blunier and Brook 2001; Blunier et al.267

1998), Chylek et al. (2010) identified a bi-polar seesaw pattern in the 20th century Arctic and268

Antarctic instrumental temperature records on multidecadal time scales, and found that the269

Arctic (Antarctic) de-trended temperatures are highly correlated (anti-correlated) with the270

Atlantic Multidecadal Oscillation (AMO) index suggesting the Atlantic Ocean as a possible271

link between the climate variability of the Arctic and Antarctic regions. Our results not272

only confirmed the existence of the bi-polar seesaw pattern on multidecadal time scales in273

phase with AMO, but progressed towards predicting the pattern as a whole on multiyear274

time scales in GFDL’s fully-coupled ensemble initialization and forecasting system.275

c. Roles of ocean internal dynamics in decadal prediction276

Previous studies with coupled models assuming perfect ocean initial conditions indicate277

that accurate initialization of Atlantic MOC may allow Atlantic multidecadal variability to278

be predicted a decade or more in advance (Collins et al. 2006; Msadek et al. 2010), and the279

AMO is suggested to be induced by Atlantic MOC variations and associated oceanic heat280

transport fluctuations (Knight et al. 2005), so we examine the North Atlantic oceanic heat281

transport in ECDA and decadal hindcasts. The regression coefficients of North Atlantic282

northward oceanic heat transport between 300N and 700N onto the time series of normalized283

North Atlantic subpolar gyre region SST anomalies for ECDA, shown in Fig. 6a, tend to284

be positive, indicating that ECDA captures the anomalous northward (southward) heat285

transport into the North Atlantic subpolar gyre associated with the positive (negative) phase286

of AMO. These results indicate that the heat transport variations in the North Atlantic are287

in phase with AMO in both ECDA and hindcasts, which is consistent with that AMOC288

variations are in phase with the observed AMO using observational and modeling results289

(Zhang 2007, 2008).290

Consequently, the decadal hindcasts initialized by ECDA also show similar anomalous291

11



northward heat transport into the North Atlantic subpolar gyre region. The time series of292

the anomalous heat transports averaged between 350N and 650N in the decadal hindcasts as293

a function of initialized years and lead time for 11 hindcast cases from 1961 to 2010, shown in294

Fig. 6b and c, generally have the same sign as the anomalous heat transports in the ECDA,295

and show anomalous southward heat transports from the 1960s till the early-1980s and296

anomalous northward heat transports from the late-1990s till 2010. In contrast, the oceanic297

heat transport in the uninitialized historical forcing simulations shows a secular weakening298

trend from 1960 to 2020 without any multidecadal variations. The predictive skill of the heat299

transport is verified against ECDA, since there is no observational long-term data available300

for oceanic heat transport. The model hindcasts have skill up to 2 years at 95% confidence301

level, while the historical forcing simulations show negative correlation with ECDA (Fig. 7).302

These results suggest that the initialization of multidecadal variations of northward oceanic303

heat transport in the North Atlantic significantly improves the predictive skill of SST.304

The forecast anomalies of the North Atlantic SST and North Atlantic oceanic heat trans-305

port averaged between 350N and 650N for the fixed-forcing decadal prediction experiments306

and the decadal hindcasts are shown in Fig. 8. The fixed-forcing forecasts of the North307

Atlantic SST show similar multidecadal variations as the decadal hindcasts as well as the308

phase transition around 1995 (Fig. 8a), indicating that the internal signals due to initializa-309

tion dominate over the forced signal on the decadal time scale in the model. Meanwhile, the310

fixed-forcing forecasts of the North Atlantic SST initialized in 1995 and 2005 show a cooling311

during about 3 to 10 year lead time resulting from the return of radiative forcing to 1961312

values. This is similar to the fast cooling of global mean temperature as a response to an313

instantaneous return to preindustrial forcing (Held et al. 2010), but the initial decay rate of314

the North Atlantic SST is much slower than that of the global mean SST (Fig. 8c). Note315

that the global mean SST in the fixed-forcing experiments shows a similar fast cooling as the316

global mean temperature in the experiments by returning radiative forcing to preindustrial317

values (Held et al. 2010). The slower decay of North Atlantic SST than the global mean SST318
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is due to the fact that the northward heat transports in the North Atlantic evolve similarly319

during the 10 yr forecasts in the two experiments (Fig. 8b), suggesting that the internal320

oceanic heat transport compensates the fast cooling of the North Atlantic SST. The fixed-321

forcing experiments further demonstrate that the ocean internal dynamics play dominant322

roles in decadal prediction over the external forcings.323

The latest forecast shows the AMO-like SST pattern is weakening in the coming decade324

2011-2020 but still in the warm phase (Fig. 1). Consistently, the bi-polar seesaw pattern325

of T2m is predicted to be weakening but still above the climatology in the coming decade326

(Fig. 4). The dynamical basis for these forecasts is that the North Atlantic northward heat327

transport is predicted to be weakening (Fig. 6). The predicted weakening of AMO-like328

patterns in the coming decade by using dynamical models is consistent with the statistically329

predicted weakening of AMOC using subsurface and surface fingerprints (Mahajan et al.330

2011).331

4. Conclusions and discussions332

The decadal predictability of SST and T2m in GFDL’s decadal hindcasts has been in-333

vestigated using the APT analysis. By diagnosing the internal residuals between initialized334

hindcasts and uninitialized historical forcing simulations using the the same model (GFDL335

CM2.1), internal multidecadal patterns (IMP) for SST and T2m were identified. The IMP336

of SST is predominantly of an inter-hemisphere dipole with warm anomalies centered in337

the North Atlantic subpolar gyre region and North Pacific subpolar gyre region, and cold338

anomalies centered in the Antarctic Circumpolar Current region. The IMP of T2m is pre-339

dominantly of a general bi-polar seesaw with warm anomalies extending from the North340

Atlantic subpolar gyre region to Greenland and the Arctic Ocean, and cold anomalies cen-341

tered in Antarctica.342

The projected time series of IMP onto observations closely follow the multidecadal oscil-343
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lations, with negative anomalies during 1965-95 and positive anomalies during 1925-60 and344

1996-2010, in phase with the observed AMO index. The retrospective prediction skills of the345

IMP for SST and T2m were verified against independent observational datasets, revealing346

that the SST pattern is predictable up to 4 year lead time at 95% significance level and up to347

10 years at 90% significance level, and the T2m pattern is predictable up to 2 year lead time348

at 95% significance level and up to 10 years at 90% significance level. Further analysis sug-349

gests that the initialization of multidecadal variations of northward oceanic heat transport350

in the North Atlantic significantly improves the predictive skill of the AMO-like IMP. The351

fixed-forcing decadal prediction experiments, in which radiative forcing is returned abruptly352

to 1961 values, further elucidate roles of ocean internal dynamics in the decadal prediction.353

Beyond the robust long-term anthropogenic signal predicted by uninitialized CMIP3 cli-354

mate models (Hegerl et al. 2007), the results presented here from GFDL’s CMIP5 decadal355

hindcasts show that the coupled climate model initialized by advanced data assimilation356

methods, may be capable of predicting AMO-like internal multidecadal pattern over mul-357

tiyears to a decade, thus pointing towards the possibility of meaningful decadal climate358

outlooks using dynamical models if they are appropriately initialized by the climate observ-359

ing system. However, the predictable signal of SST is primarily located in the North Atlantic360

subpolar gyre, and not a basin-scale signal observed in the North Atlantic. The predictable361

signals of T2m mainly are in two polar regions, but not over other continents indicated by362

previous studies (Hermanson and Sutton 2010). This discrepancy may be attributable to363

model biases and lack of deep-ocean observations in the 20th century. Another possibility364

is that the continental predictability may be related to some other SST pattern that is less365

predictable than the AMO-like pattern (Jia and DelSole 2011).366

A challenge for decadal prediction is the lack of many decadal-scale events (e.g., AMO367

transitions) for assessing its reliability. In contrast, there are many realistic ENSO cases368

for assessing seasonal climate prediction. In this study, the hindcast period from 1961 to369

2011 covers only one AMO episode, so the reliability of the predictive skill presented here370
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needs to be evaluated by hindcasts covering more AMO episodes. More research is needed371

on producing a larger set of initial conditions covering more AMO episodes for assessing372

decadal climate prediction. Nevertheless, the skill of the dynamical model prediction is373

consistently better than that of the persistence forecasts, especially for forecast lead times374

longer than 5 years, thus the results presented here are encouraging for CMIP5 decadal375

prediction initiatives using initialized dynamical models.376
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APPENDIX383

384

Details of calculation385

a. APT386

For solving the APT optimization problem (Equ. (2) in the main paper) in pratice, the387

data are first projected onto the leading principal components (PC) (DelSole et al. 2011).388

The sensitivity of APT to the truncation of PCs for SST, shown in Fig. 9, indicates that389

the results for the time series of IMP and projection of IMP onto observations are virtually390

independent of the number of PCs in the range of 20-40 PCs, presumably because the time391

series of 5100 years are relatively long. We obtained similar results for the APT analysis of392

T2m (figures not shown). We choose 30 EOFs for displaying results for both SST and T2m393

in the paper.394

Following (DelSole et al. 2011), the statistical significance test of APT was estimated395

by Monte Carlo methods. The null hypothesis for the test is that the data are drawn from396

a white noise process when sampled every 2 years. Accordingly, we generate a 30 × 2500397

data matrix by drawing independent random numbers from a normal distribution with zero398

mean and unit variance. The time dimension of the data was grouped as a set of 25 10-yr399

forecasts with 10 ensemble members. 30 APT values were then determined. This procedure400

was repeated 1000 times to generate 1000 × 30 APT values. The upper fifth percentile of401

the 1000×30 APT values was then determined as the threshold values, plotted in Fig. 10 as402

the horizontal line. The figure shows that the first 25 (10) components of SST (t2m) have403

statistically significant APT values. However, only the leading component has multi-year404

predictive skill verified against observations, so we only focus on the leading component in405

this study.406
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b. Statistical tests407

Two statistical significance tests were performed in this study. One null hypothesis is408

that the anomaly correlation coefficient is zero, and critical values at 95% (90%) significance409

levels are computed for assessing the predictive skill at each lead time. The other null410

hypothesis is that two anomaly correlation coefficients are not different from each other. We411

compute the p-value of testing the difference of two anomaly correlation coefficients for the412

decadal hindcasts and the persistence forecasts at each lead time.413

Autocorrelation in the data was accounted for by adjusting the effective sample size (N∗)414

using the following procedure (Trenberth 1984; Bretherton et al. 1999):415

N∗ =
N

1 + 2
N−1∑
j=1

(1 − j
N

)ρxx(j)ρyy(j)

(A1)416

where N is the number of sample pairs, and ρxx(j) and ρyy(j) are the sample autocorrelation417

of x and y at lag j. The effective N∗ was used for computing the critical values of testing418

the significance difference of the anomaly correlation from zero, and p-values of testing the419

significance difference of two correlation coefficients. Although 41-50 samples were used to420

compute the skill of forecasts at each lead time, we found that the effective sample size is421

generally less than 10 due to the strong autocorrelations of the forecasts and observations.422
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Fig. 1. a, The spatial structure of the component that maximized the average predictability
time of SST in the decadal hindcasts, which is called IMP. b, The ensemble mean (black
solid) and spread (gray shading) time series of IMP as a function of forecast lead time for
the decadal hindcasts initialized on 1 January every 10 years from 1965 to 2005, the time
series for projecting the ERSST data onto IMP (red solid) and the normalized AMO index
(blue solid) from 1920 to 2010. c, Same as b but for hindcasts initialized on 1 January 1961
and every 10 years from 1970 to 2010. The green line denotes the projected time series of
HadISST data onto IMP.
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for the model hindcasts (black dots) and the persistence forecasts (green squares) of the
SST IMP verified by the ERSST observations as a function of the forecast lead time. The
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in the North Atlantic as a function of the forecast lead time. The dashed and dotted lines
indicate the critical values at the 95% and 90% significance levels of AC respectively for
model hindcasts (black) and historical forcing simulations (green).
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Fig. 8. a, The ensemble mean (thick) and spread (thin) time series of the anomalous SST
in the North Atlantic subpolar gyre region as a function of forecast lead time for the decadal
hindcasts (red) and fixed-forcing (blue) experiments initialized every 10 years from 1965 to
2005. b, Same as a but for the anomalous oceanic heat transport averaged over the latitude
belt between 350N and 650N in the North Atlantic. c, Same as a but for the anomalous
global mean SST.
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Fig. 9. a, The ensemble mean time series of IMP as a function of forecast lead time for the
decadal hindcasts initialized on 1 January 1961 and every 10 years from 1970 to 2010 using
20, 30 and 40 leading PCs. b, the time series for projecting the ERSST data onto IMP from
1920 to 2010 using 20, 30 and 40 leading PCs.
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Fig. 10. The APT values using 30 leading PCs for SST and T2m. Solid horizontal line is
the 5% significance level of the APT values.
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